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Abstract. Excluded volume effects increase the dimensions of the various branches of a 
uniform brush polymer to different extents. We use Monte Carlo methods and perturbation 
calculations to study the mean-square end-to-end branch lengths of a uniform brush with 
two branch points, as a function of the number ( n )  of monomers in a branch and the 
functionalities ( f i  and f 2 )  of the branch points. The mean-square end-to-end length ( R ; )  
of a branch scales like En?’ and we investigate how the amplitude ( E )  varies for the 
different types of branch as f l  and f ?  vary. The amplitude ratios are expected to be 
lattice independent and we find good agreement between our numerical estimates of these 
ratios from perturbation and Monte Carlo calculations.We have extended the perturbation 
calculations to make predictions for the corresponding amplitude ratios for the mean-square 
radii of gyration of the various branches. 

1. Introduction 

Branched polymers with a specified architecture and the same number of monomers 
in each branch have been receiving considerable attention of late (e.g. Ohno and 
Binder 1988 and references therein). Earlier work focused on excluded volume effects 
in uniform f-stars, which are polymers with f branches (meeting at a vertex of degree 
f )  and n monomers in each branch. The statistics, dimensions and dynamics of these 
have been studied by the renormalisation group (Miyake and Freed 1983, Vlahos and 
Kosmas 1984, Ohno and Binder 1988), conformal invariance (Duplantier 1986), exact 
enumeration (Wilkinson er a1 1986), Monte Carlo (Whittington et al 1986, Wilkinson 
et al 1988) and molecular dynamics techniques (Grest et a1 1987). Where comparisons 
can be made between the results of these various approaches the agreement is generally 
good. In particular, there is agreement that g, the ratio of the mean-square radius 
of gyration of an f-star to that of a linear polymer with the same total degree of 
polymerisation, is insensitive to effects of excluded volume. Nevertheless, excluded 
volume effects are important in determining the dimensions of such polymers and, in 
particular, the branches of a uniform star are expanded (relative to a random walk 
model) by excluded volume effects within and between branches. This can be seen both 
in the mean-square end-to-end length of a branch (Miyake and Freed 1983, Whittington 
et al 1986), and in the mean-square radius of gyration of a branch (Whittington et al 
1988). 

In this paper we study the dimensions of the branches of uniform brushes with 
two branch points. A (k,,k,)-brush has two branch points with functionalities k, + 2 
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Figure 1. Examples of uniform brushes: (a)  (1,3)-brush, (b)  (2,2)-brush. 

and k2 + 2. See figure 1 for some examples. In such structures there are in general 
(for k,  # k,) three distinct types of branch which we call k,-branches, k,-branches 
and the internal branch. These are expected to be expanded by different amounts 
and the degree of expansion will depend on k, and k,. In section 2 we investigate 
the magnitude of this effect on the mean-square end-to-end length of a branch using 
Monte Carlo techniques and, in section 3, compare these results with those obtained by 
a perturbation calculation. The agreement is very satisfactory. In section 4 we extend 
the perturbation calculations to the mean-square radius of gyration of a branch, 
which could in principle be measured by neutron scattering experiments on suitably 
deuterated samples. 

2. Monte Carlo calculations 

In this section we describe Monte Carlo results for uniform brushes weakly embeddable 
in the simple cubic lattice. We study the mean-square end-to-end length ( R , ( k , ,  k,, r ) ’ )  
of a branch of a ( A , ,  k,)-brush with n edges in each branch, where = 0, I ,  2 according 
to whether the branch is the internal one (between the two branch points), a branch 
from a vertex of degree 1 to the branch point of degree ( k ,  + 2), or from a vertex of 
degree 1 to the branch point of degree (k2 + 2). 

We used an inversely restricted sampling technique (Rosenbluth and Rosenbluth 
1955) to generate brushes with k ,  = 1, k2 = 1,2,3 and 4, with n I: 20. Sample sizes 
ranged between 500,000 and 2,000,000. Samples for the various values of n were 
uncorrelated. 

By analogy with self-avoiding walks we expect that 

(R,(k,,k,,r)’) = B(k,,k,,r)n2”[1 f C ( k , , k , , ~ ) n - ~  +O(n-’)] . (2.1) 

Log-log plots of (R,(k,, k2,r ) , )  against n give a set of parallel lines, indicating that v 
is independent of k,, k, and 2, and consistent with a value of v equal to that for a 
self-avoiding walk, i.e. 0.588. In the subsequent analysis we assume that A = 0.47 (Le 
Guillou and Zinn-Justin 1980). 

If ( R i )  is the mean-square end-to-end length of an n-step self-avoiding walk, and 
B is the corresponding amplitude, we are primarily interested in the amplitude ratios 

which are expected to be lattice independent and which can therefore be compared 
with results from experiments and from continuum calculations. 

In figures 2 and 3 we show the n dependence of (R,,(l,k,r)2)/(Ri) for U. = 0 (the 
internal branch) and for r = 2, for k = 1,2,3 and 4. The values of ( R ; )  for the self- 
avoiding walk are taken from Guttmann (1987). We see that, for each k ,  the internal 
branch is more expanded than the external branch and, in both cases, the degree of 
extension increases as k increases. 
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Figure 2. The n-dependence of the reduced mean-square end-to-end length of the internal 
branch of a (1.k)-brush. Error bars (one standard deviation) are no larger than twice the 
size of the symbols. 
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Table 1. Comparison of estimates of amplitude ratios of branches of a (1,  k)-brush from 
Monte Carlo (MC) and first-order €-expansion (RG) calculations 

.?A@) & I )  nil) 
I\ MC RG MC KG MC RG 

~ 

1 1.35i0.05 1.305 1.128iO.010 1.119 1.128+0.010 1.119 
2 1.45+0.05 1.402 1 .13~0.01  1.124 1.16i0.02 1.175 
3 1.52-tO.04 1.499 1.13i0.02 1.128 1.21k0.02 1.230 
4 1.58+0.06 1.596 1.13k0.03 1.132 1.26-tO.03 1.285 

In order to estimate A?(l,k,z) we plot ( R , , ( l , k , r ) * ) / ( R ; )  against n-04'. A typical 
plot is shown in figure 4. The value of a(1, k , r )  is estimated from the intercept and 
numerical estimates for various values of k and r are given in table 1. 
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3. Perturbation calculation for (R,(k, ,  k,,  a),) 

In this section we present a perturbation calculation of the mean-square end-to-end 
length of a branch of a uniform ( k i ,  k,)-brush, to first order in F = 4 - d, where d is 
the dimensionality of the space. 

We use the Gaussian model with excluded volume interactions according to which 
the probability distribution P { R , , }  of the set of position vectors of the ith monomer in 
the jth branch is given by 

b n n  n n b b  

PJR,,) = P O P , / )  exp( --U y,yy Sd(Rlk - R/!J - U cc J d ( R , ,  - R/J) 
k = l  I=, /#I  I = ]  / = I  k = l  I j k  

d ' , { R , , }  exp(-u@) (3.1) 

where P,{R, ,}  is the ideal probability, which includes connectivity effects but not 
excluded volume terms. N is the total number of monomers, b is the total number of 
branches in the brush and U is an excluded volume parameter. 

To first order in U the mean-square end-to-end length of the a-branch is equal to 

( R 2 ( 4 )  = ( R 2 ( a ) ) ,  - U [ ( R 2 ( X ) W ,  - ( R 2 ( 4 ) , ( @ ) J  (3.2) 

where we have suppressed the dependence on k ,  and k ,  and where 

(. . 

Clearly ( R2 ( a ) ) ,  is proportional to n. 

1.4 c 
(3.3) 

a=O 
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Figure 4. Extrapolation against n-" of the reduced mean-square end-to-end length of the 
branches of a (1,2)-brush. 

For a = 1 the U term in (3.2) has three contributions. These are an intra-branch 
term, f, = k ,  + 1 interactions between the branch and a second branch incident on the 
same branch point, and f z  = k ,  + 1 interactions between the branch and one of the f 2  
branches not incident on the first branch point. Diagramatically we can write this as 

h 
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Interchanging f l  and f z  gives (R(2)2). For the internal branch (z = 0) there are again 
three contributions to the U term, These are an intra-branch term, cf,  + f z )  interactions 
between the internal branch and any of the other branches, and f l f 2  interactions 
between pairs of branches, one incident on each branch point. This can be written as 

A factor of ( d / 2 n ~ * ) ~ ”  has been absorbed in U to make U and ( R ( Z ) ~ )  dimensionless. 
All of the diagrams have a single loop and are of the form -C2 /L(d /2 )+1  where L 

is the length of the loop and C is the length of the common part of the branch being 
considered and the loop (Fixman 1955). The forms and values of these diagrams are 
given in table 2. Using these we find 

Table 2. Forms of the diagrams required for (R,(z)*), and their values for d = 4. 

Diagram Form Value 

(3.7) 

Setting f ,  = f 2  = 0 gives the self-avoiding walk result, then taking ratios and 
replacing U by its fixed point value U* = € / I6  (Kosmas 1981) gives 

a(0) = 1 + ie[0.443cfl + f z )  +0.167f,f2] 

a( 1) = 1 + f e  [0.443f1 + 0.034fJ 

g ( 2 )  = 1 + $~[0 .034f~  + 0.443fJ. 

(3.8) 

(3.9) 

(3.10) 

In table 1 we give the numerical values of these amplitude ratios for f l  = 2, 
f z  = k + 1, for k = 1,2,3 and 4, and for E = 1. The agreement with the Monte Carlo 
estimates is generally satisfactory, in that all the €-expansion results are within one 
standard deviation of the Monte Carlo estimates. 

4. Mean-square radius of gyration 

The expansion of the end-to-end length of a branch of a brush, which we discussed 
in sections 2 and 3, is a result of interference between the branches. This interference 
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will also lead to expansion of the radius of gyration of a branch; we study this 
phenomenon in this section using perturbation techniques. In principle this should be 
observable experimentally by neutron scattering studies of a brush with one branch 
suitably deuterated. 

The mean-square radius of gyration of the j th  branch can be expressed as 

i = l  k = i + l  

= n-= ln di ln dk((Rij - Rkj ) ’ ) .  (4.1) 

To first order in U 

( (R , ,  - Rk,) ) = ( ( R , ,  - R,,)’) ,  - ul( (R, ,  - R,,)’@), - ((RI, - Rk,)z)o(@)oI (4.2) 2 

For r = 1 the mean-square radius of gyration can be written in diagrammatic form 
as 

(S,Cl)’) = (na2/6) - (ua2/n2) 2 + 2  0 + 4  7 i 
/ I  + 2f, G+- + 2f, .r;;’h, + 2 f 2  + + 2f, -;t‘) (4.3) 

I I 

where the dots correspond to a pair of monomers in the same branch and imply a 
summation over the square distances between such pairs of monomers. The forms and 
values of the diagrams are given in table 3. These lead to 

(Sn(l)2) = (na2/6)(1 +2u[lnn- 2 + f , ( y  -61n2)+f2(?$ -36ln3+42ln2)] )  (4.4) 

(S,(2)2) is given by interchanging f I  and fz in (4.4). For the internal branch the 
corresponding result is 

(S,(O)’) = (na2/6) - (ua2/n2) 2 + 2 0 + 4 -+Q- 

‘- \ 

( 
+ 2(f, + fz, ++- + 2(fl + fz) y + 2flf2 -) 

= ( n a 2 / 6 ) ~ 1 + 2 u [ l n n - ~ + C f , + f 2 ) ( ~ - 6 1 n 2 ) + ~ f I f 2 ] ) .  (4.5) 

We write 

where (S:) is the mean-square radius of gyration of a self-avoiding walk. Then, 
replacing U by its fixed-point value (e/  16) and dividing by the self-avoiding walk result 
(obtained by setting f !  = f z  = 0), we obtain 

B(O) = 1 + $~[0.216(f,  + f 2 )  + 0.083flfJ 

%( l )  = 1 + $e[0.216f1 + 0.020f2] 

Y(2) = 1 + $~[0.020f, + 0.216fzI. 
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Table 3. Forms of the diagrams required for (S,(2)'), and their values for d = 4. 
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Diagram Form Value 

5. Discussion 

Excluded volume effects give rise to differential expansion of the various types of 
branches in a uniform brush. The perturbation calculations described in sections 3 and 
4 show that this is due to two contributing effects. The first is the interaction between a 
distinguished branch and the remaining branches. The effect of the remaining branches 
is smaller when they are further away from the distinguished branch. The second effect, 
which acts only on the internal branch, is due to repulsion between branches attached 
to the internal branch at different branch points. This repulsion leads to an 'extensive 
force' on the internal branch. 

The effect on the mean-square radius of gyration is only about half as big as the 
effect on the mean-square end-to-end length. See equations (3.8)-(3.10) and (4.7)-(4.9). 
This arises from the averaging in the radius of gyration over all lengths up to and 
including the maximum. 

This work, as well as our previous work (Whittington er a/ 1988) on the internal 
dimensions of uniform stars, shows that perturbation calculations agree well with 
Monte Carlo estimates and provide reliable results, at least for small functionalities. 
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